
Software Architecture
Assessment 1 Architecture: https://engteam14.github.io/website2/pdfs/Arch1.pdf

Abstract architecture was created with draw.io with basic relationships of the program being
shown on the diagram.

Concrete architecture was produced jointly by PlantUML and Adobe Photoshop. The classes
were separated into different categories with the connections within the category shown on the
diagram. The inter-category connections are later added through Adobe Photoshop with lines
colour coded for easier understanding.

Abstract Architecture

Fig 3.1.1: Diagram of the abstract architecture

Concrete Architecture

Fig 3.1.2: Diagram of miscellaneous classes

Fig 3.1.3: Diagram of Entity and Component classes

Fig 3.1.4: Diagram of Manager classes

3b)

The abstract architecture is concerned with decomposing the game into smaller logical
elements which could be planned and reasoned about separately. Connections drawn between
groups of elements signify a logical relationship rather than necessarily representing extension
or composition relations (shown by red lines), the diagram also shows some important classes,
their attributes, and Composition/Aggregation. Our abstract architecture mainly focuses on the
entity-component relationships the game would need as well as some other intangibles and the
concept of having managers which are logically linked to the entities. This enabled us to have a
base outline of the different classes needed in order to develop our concrete architecture.
The concrete architecture builds on the abstract in two main ways, by capturing additional
implementation details, and by reflecting the contribution of the game engine to enabling game
functionality. It is important to note that the concrete architecture is not a thorough
representation of the final implementation to ensure it is not overly detailed causing confusion.
PirateGame is the main class of the game which contains all the class instances of the game
UI screens and also the methods for creating, starting, loading and restarting the game. We
use an Entity-Component system to manage our game as shown in the abstract diagram. The
Entity class represents each interactable object within the game world. Each Entity
contains Component s, which are reusable patterns of code present throughout multiple
entities. The most basic components are Renderable which defines how the entity is
displayed and Transform which defines the entity's position within the game, which all
entities other than WorldMap have.
Renderable works in tandem with the RenderingManager which controls the Camera and
makes sure all entities with attached Renderable components are drawn each update which
helps satisfy the NFR_RENDER_SMOOTHNESS requirement. All the textures and sprites
which are used throughout the game are loaded in and stored within the ResourceManager .
All components inherit the Component class which was added into the concrete architecture
as a base class for components to handle raising events and holds the ComponentType as
an enum and its Entity parent, and Entity is inherited by all entities and was added for the
same reason. This is all handled by the EntityManager which tells components to
raiseEvents and holds the ArrayLists of entities and components .
Physics

To implement physics we added the Rigidbody components and a PhysicsManager . The
Rigidbody component is used to define the collision fixtures of the object and is a
component of CannonBall , PowerUpPickup , Buidling , Ship and Obstacle
because they all need to colide/be collidable.
The PhysicsManager creates and keeps track of collidable terrain hitboxes. The
PhysicsManager was not explicitly defined in the abstract as it was assumed that the game
engine would handle all physics but due to the nature of LibGdx, the PhysicsManager had
to handle it.
The collisions themselves are handled by CollisionManager which defines and handles
the behavious for all different types of collisions. This is so that different collisions can have
different effects (i.e some dealing damage, some having a knockback effect etc) in accordance
with requirements: NFR_WORLD_COLLISIONS, NFR_SHIP_COLLISIONS, and
NFR_BULLET_COLLISIONS.
Ships

Ships are instantiated byGameManager . Two classes inherit the Ship class , NPCShip
and Player in both the abstract and concrete architectures. This means that the two different
types of ships can have different components due to the different functionality needed but also
inherit some attributes and methods from Ship . Ship has the Pirate component which
gives all ships including the player a damage value, health, and plunder as well as a faction
(Fulfils UR_EARN_PLUNDER/XP and) but only the NPCShip has the AINavigation
component to fulfil FR_FRIENDLY_AI and FR_HOSTILE_AI while Player has the
PlayerControl component to fulfil FR_PLAYER_FIRE, UR_FIRE_WEAPONS,
UR_BULLET_DODGE and UR_SHIP_CONTROL as it allows the player to move their ship and
fire.
Power-Ups

We separated PowerUp functionality into its own class, PowerUp in both abstract and
concrete due to the two different ways of gaining PowerUps, buying (UR_SPEND_PLUNDER)
and picking up (UR_POWER_UP). This class can then be applied to a ship using the
PowerUpApplied component.PowerUp s in the game world are stored under the
PowerUpPickup entities, which are spawned in by the GameManager when the game
starts. PowerUp s bought in the shop do not need a new class as they are purely data.
Obstacles & Weather

Obstacles are entities that have the obstacleControl component as well as the standard
components mentioned above. This assigns a hitDamage and hitRate to each obstacle
and deals damage to the player (UR_OBSTACLE ENCOUNTER). Weather inherits
Obstacle and adds functionality for moving around the map. This was designed from the
outset in abstract architecture due to the similar functionalities of obstacles and weather.
Cannonballs

The CannonBall class represents the cannonballs that the ships and college buildings can
fire which can collide with other entities, causing damage. .(UR_FIRE_WEAPONS,
UR_HOSTILE_BUILDING_COMBAT & UR_SHIP_COMBAT). The collisions are registered
with CollisionManager and moved with PhysicsManager . This class is defined in the
abstract architecture.
Colleges

A College has a Pirate component which was added to enable shooting and assign loot
and health. Each instance of College also has Building objects attached to it.
UR_COMPETING_COLLEGES and UR_HOSTILE_COLLEGE_CAPTURE. College also
gained the Transform Component in the concrete architecture as we decided it would be
useful to allow the college to be placed in specific places that could be moved easily if the map
changes in development.
UI

In our abstract diagram, we had a general UI group but upon researching LibGdx we found that
each UI screen is implemented with a separate class which must inherit ScreenAdapter
which is a libGdx defined class with a standard method for update() , render() and more.
In our concrete diagram, the different screens actually inherit a class defined by us called
Page which itself inherits ScreenAdapter. This is so that Page can create actors to be
displayed which will be the same process across all screens. The PauseScreen and
MenuScreen screen helps to implement UR_GAME_SAVE and also the Pause class also
implements FR_GAME_RESET and EndScreen displays a different wonText depending on
whether the player won or lost the game.
Quests

Quests are implemented by having a main Quest which is the parent class of the quest types
and has the method for checking is completed as well as important attributes. KillQuest
and LocateQuest both inherit the Quest class and represent different types of quests.
(FR_QUEST_OBJECTIVE). In the abstract, the Quest class was a standalone Intangible but
due to the slightly different implementation needed for killing vs picking up, we created the child
classes. Furthermore, a QuestManager was added to handle the creation of tests and to
check through all quests to see if they are completed or not. This fullfills
FR_QUEST_RANDOMISE, UR_QUEST_PROGRESS, UR_GAME_WIN and
FR_QUEST_TRACKING.
AI

NPCShip has the component AINavigation which gives the AI ship entities the ability to
use the AI algorithm to move around the map in our abstract architecture. This is the same way
that it was implemented in our concrete architecture, however instead of having an Int
representing the mode that the ship is in, it has a SteeringBehavious and
SteeringAcceleration which is a type of vector defined by the LibGdx Game Engine
which was added in to simplify the implementation so that we could use predefined functions
from LibGdx in the movement of our entities.
Once behaviours are set, they are passed on to the AINavigation Component attached to
the ships which use a path made up of Node s to control the entity’s movement. These classes

all came under the AI group in the abstract architecture as we were hoping the game engine
we chose would have a way of dealing with this but unfortunately libGDX does not. The AI
classes fulfil the objective NFR_AI_LAG and UR_FRIENDLY_SHIP_ENCOUTNER,
FR_FRIENDLY_AI, FR_HOSTILE_AI
and UR_HOSTILE_SHIP_ENCOUNTER
Saving

The SaveManager class is the class that enables UR_SAVE_GAME. The SaveGame
method fullfills FR_SAVE_GAME_STATE and the LoadGame methods fulfill
FR_GAME_LOAD. Again this came under the Managers heading in the abstract diagram but it
wasn't until we chose the game engine that we could decide exactly how this would be
implemented.

